Low-Terahertz Transmissivity with a Graphene-Dielectric Micro-Structure

Chandra S. R. Kaipa, Alexander B. Yakovlev
George W. Hanson, Yashwanth R. Padooru
Francisco Medina, Francisco Mesa

IEEE MTT-S International Microwave Symposium
Montréal, Québec, Canada, 17-22 June 2012
TU2D: Applications of Carbon-Based RF Technology
OUTLINE

- Introduction and Motivation
- Graphene-Dielectric Stack
 - Enhanced Transmission at low-THz
 - Broadband Filters
 - Frequency of Enhanced Transmission (Excess Length Concept)
- Results and Discussions
- Conclusions
Induced transparency in the optical regime

- Extremely thin conducting layers are almost opaque.

- However, multilayer metal-dielectric PBG-like structures become transparent within certain frequency bands in the optical regime.

Can a similar effect be observed at microwaves??

The metal films are substituted by perforated metal layers

Yakovlev et al., 3rd Int. Congress on Advan. Electromag. Materi. in Microwa. and Optic.,(2009)

BACKGROUND AND MOTIVATION (3)

- The number of transmission peaks is equal to the number of layers (resonators)

Graphene-Dielectric Stack

- Atomically thin graphene sheet
- Dielectric slab

h
Surface conductivity of graphene [Kubo formula]

\[
\sigma(\omega, \mu_c, \Gamma, T) = \frac{je^2}{\pi \hbar^2} \frac{\omega - j\Gamma}{\omega - j\Gamma^2} \left[\frac{1}{\omega - j\Gamma^2} \int_0^\infty \left(\frac{\partial f_d}{\partial \varepsilon} \varepsilon - \frac{\partial f_d}{\partial \varepsilon} \frac{-\varepsilon}{\omega - j\Gamma^2 - 4\varepsilon/\hbar} \right) d\varepsilon \right]
\]

Intraband contributions

\[
\sigma_{\text{intra}} = -j \frac{e^2 k_B T}{\pi \hbar^2} \frac{\mu_c}{k_B T} \left(\mu_c / k_B T + 1 \right) \ln \left(\frac{\mu_c / k_B T + 1}{\mu_c / k_B T - 1} \right)
\]

Interband contributions

\[
\sigma_{\text{inter}} = -\frac{je^2}{4\pi \hbar} \ln \left(\frac{2|\mu_c| - \phi - j\Gamma \frac{\hbar}{\omega}}{2|\mu_c| + \phi - j\Gamma \frac{\hbar}{\omega}} \right)
\]

- \(e\) : charge of electron, \(T\) : temperature, \(\varepsilon\) : energy
- \(\omega\) : angular frequency, \(\hbar = h/2\pi\) : reduced Planck’s constant
- \(\mu_c\) : chemical potential, \(\Gamma\) : phenomenological scattering rate

In the far-infrared regime, the contribution due to the interband electron transition is negligible

\(Z_s = 1/\sigma\), which at low-terahertz frequencies behaves as a low-loss inductive surface.

G. W. Hanson, J. Appl. Phys., 103, 064302 (2008)
Surface Conductivity Graphene

$\mu_c = 0.2 \text{ eV}$

$\mu_c = 0.5 \text{ eV}$

$\Gamma = 1/\tau = 1.32 \text{ meV}$, $\tau = 0.5 \text{ ps}$, $T = 300 \text{ K}$

$\sigma_{\text{min}} = \pi e^2 / 2h = 6.085 \times 10^{-5} \text{ S}$

Solid lines: approximate closed-form expressions (intraband + interband)
Dashed lines: numerical integration [Kubo formula]
Single sheet of graphene is highly reflective at low-THz frequencies. Behaves similar to an Inductive grid (metallic meshes) at microwaves.

\[\Gamma = \frac{1}{\tau} = 1.32 \text{ meV} \]
\[\tau = 0.5 \text{ ps} \]
\[T = 300 \text{ K} \]
\[\mu_c = 1 \text{ eV} \]
TWO-SIDED GRAPHENE STRUCTURE

- Transmission resonance appears at low frequencies
- FP-type resonance of dielectric slab loaded with graphene sheets

Graphene sheets effectively increase the electrical length

Thickness \((h)\): 10 \(\mu\text{m}\)
Permittivity: 10.2

\[
\Gamma = \frac{1}{\tau} = 1.32 \text{ meV}
\]
\[
\tau = 0.5 \text{ ps}, T = 300 \text{ K}
\]

\[
\mu_c = 0.5 \text{ eV}
\]
The number of transmission peaks is equal to the number of dielectric slabs within the characteristic frequency band.
Power Transmission Spectra

Enhanced transmission at low-THz

Fabry-Perot resonances of the individual open/coupled cavities

4 layer graphene structure
- 4 dielectric slabs
- 5 graphene sheets

Thickness \((h)\): 10 μm
Permittivity: 10.2

\(\Gamma = 1/\tau = 1.32 \meV\)
\(\tau = 0.5 \text{ ps}, T = 300 \text{ K}\)
1.0 eV

Electric Field Distributions

\(\mu_c = 1.0 \text{ eV} \)
ELECTRIC FIELD DISTRIBUTIONS-ANIMATION PLOTS

Mode B

Mode D
BRILLOUIN DIAGRAMS – PASSBANDS AND STOPBANDS

Multi-layer graphene-dielectric stack

- **StopBand (SB)**
- **PassBand (PB)**

\[\mu_c = 1.0 \text{ eV} \]

Thickness (h): 10 \text{ \textmu m}

Permittivity: 10.2

SB: StopBand

PB: PassBand
Graphene Thick Slabs Brillouin Diagrams

Four-layer graphene-dielectric stack

- Exhibits a series of bandpass regions separated by bandgaps
- A thick dielectric slab is sometimes needed for mechanical handling
- Exhibits a series of bandpass regions separated by bandgaps

\[\mu_c = 1.0 \text{ eV} \]

SB: StopBand
PB: PassBand

Thickness \((h)\): 150 \(\mu\)m

Permittivity: 2.2
Excess Length

FP resonance of dielectric slab

- Substrate thickness: 20 μm
- Dielectric permittivity: 2.2
- \(\mu_c = 0.5 \text{ eV} \)

FP resonance due to the presence of Graphene sheets

<table>
<thead>
<tr>
<th>(h) (in μm)</th>
<th>(f_T) (Approx.)</th>
<th>(f_T) (Calculated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>≈ 2.15 THz</td>
<td>2.89 THz</td>
</tr>
<tr>
<td>40</td>
<td>≈ 1.50 THz</td>
<td>1.75 THz</td>
</tr>
<tr>
<td>60</td>
<td>≈ 1.16 THz</td>
<td>1.28 THz</td>
</tr>
<tr>
<td>80</td>
<td>≈ 0.95 THz</td>
<td>1.01 THz</td>
</tr>
<tr>
<td>100</td>
<td>≈ 0.8 THz</td>
<td>0.84 THz</td>
</tr>
</tbody>
</table>

Accurate when \(h > \Delta h \)

- For larger separation between the Graphene sheets, \(f_T \) calculated using the excess lengths gives pretty close results to the analytical results.

- \(L_G = 0.01699 \text{ nH} \)

\[\Delta h = \frac{2cL_G}{\eta_0} \approx 27.04 \text{ μm} \]

\[f_T = \frac{c}{2(\epsilon + \Delta h) \sqrt{\epsilon}} \approx 2.15 \text{ THz} \]
Broadband Planar Filters

- Broadband transmission
- Can be tuned by varying the chemical potential

<table>
<thead>
<tr>
<th>μ_c (eV)</th>
<th>f_{LB} (THz)</th>
<th>f_{UB} (THz)</th>
<th>BW (THz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.33</td>
<td>6.24</td>
<td>3.91</td>
</tr>
<tr>
<td>0.5</td>
<td>1.49</td>
<td>5.20</td>
<td>3.71</td>
</tr>
<tr>
<td>0.2</td>
<td>0.78</td>
<td>4.44</td>
<td>3.66</td>
</tr>
</tbody>
</table>

Thickness (h): 10 μm
Permittivity: 10.2
BROADBAND PLANAR FILTERS

- Number of peaks correspond to number of layers (N)
- With increase in ‘N’, all peaks lie in a characteristic frequency band
- Acts as a Wideband Bandpass filter

$\mu_c = 0.5 \text{ eV}$

$\mu_c = 1 \text{ eV}$
BROADBAND PLANAR FILTERS

Five-layer graphene/meshgrid stacks separated by free-space

- $\text{Height (} h \text{)} = 30 \, \mu\text{m}$,
- Period (D) = $20 \, \mu\text{m}$,
- Strip width (w) = $2 \, \mu\text{m}$,
- $t = 0.4 \, \mu\text{m}$,
- Dielectric permittivity: 1

- Graphene-air stack mimics the behavior of Fishnet-air stack at THz
CONCLUSIONS

- We mimic the enhanced transmission at optical frequencies with a metal-dielectric stack and in the microwave regime with stacked-metascreens, at low-THz using stacked-graphene.

- The range of frequencies where the peaks are expected for a finite graphene-dielectric stacked structure can be analytically and accurately estimated from the Bloch analysis.

- Tunable structures can be designed using stacked graphene sheets.

- Excess length concept has been successfully demonstrated.

- Broadband planar filters have been realized using a stack of graphene sheets in free-space.