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IntroductionIntroduction

Homogenization models for the analysis 
of high-impedance surfaces with g p
graphene (two-dimensional semi-metal) 
patches with and without vias

Dynamic model for HIS with graphene
patches (no vias)

grid impedance of graphene patches- grid impedance of graphene patches
- circuit theory model

Non-local model for mushroom-type HIS with 
graphene patches
- Additional Boundary Condition (ABC)
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- spatial dispersion of wire-medium slab



GrapheneGraphene

•• GrapheneGraphene is a mono-atomic layer of graphite
•• A single-wall carbon nanotube is a rolled-up sheet 
of graphenegrapheneof graphenegraphene

• Although graphene has been long studied to explain  
the properties of carbon systems, it was long thought  p p y , g g
that graphene itself did not exist

2004 – graphene found!2004 graphene found!
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GrapheneGraphene

GrapheneGraphene is moderately easy to make, and is visible in 
an optical microscope when residing on oxidized Si with 
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a opt ca c oscope e es d g o o d ed S t
a certain Si02 thickness due to a weak interference effect



Graphene Graphene –– New Generation of TransistorsNew Generation of Transistors

Graphene can be gated, and has long spin-coherence 
length and high mobility at room temperaturelength and high mobility at room temperature

μ greater than 15,000 cm2/Vs have
been measured and 200 000 cm2/Vs
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been measured, and 200,000 cm /Vs
are predicted to be possible



Surface Conductivity of GrapheneSurface Conductivity of Graphene

• No magnetic bias field
• Spatial dispersion – not important at microwaves
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PlanePlane--Wave Incidence Wave Incidence 
Analytical Modeling of Graphene HIS StructuresAnalytical Modeling of Graphene HIS Structures

• Dynamic solution of 2D strip
grid scattering problem

• Averaged impedance boundary• Averaged impedance boundary
condition

• Approximate Babinet principle

Transmission-line network
Graphene patches
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Grid Impedance of Graphene Patches and StripsGrid Impedance of Graphene Patches and Strips
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Surface Impedance of Grounded SlabSurface Impedance of Grounded Slab

Dielectric Impedance
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Graphene HIS at Oblique IncidenceGraphene HIS at Oblique Incidence

D = 2 mm, g = 0.2 mm, h = 1 mm 
10.2r 

TM polarization
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Tunable Graphene HISTunable Graphene HIS

D = 2 mm, g = 0.2 mm, h = 1 mm 
10.2r r

TM polarization

Reflection minima obtained 
at different incident angles g
by adjusting the chemical 
potential

Solid lines – analytical model
Dashed lines – FEM results
(C l M l i h i
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(Comsol Multiphysics, 
http://www.comsol.com)



Tunable Graphene HISTunable Graphene HIS

D = 2 mm, g = 0.2 mm, h = 1 mm 
10.2r r

TE polarization

Reflection minima at different 
incident angles are obtained in a 
narrow frequency range by 
adjusting the chemical potentialj g

Solid lines – analytical model
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HIS with PEC Patches and Lossy Dielectric SlabHIS with PEC Patches and Lossy Dielectric Slab

D = 2 mm, g = 0.2 mm, h = 1 mm 

TM polarization
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Mushroom Array with Graphene PatchesMushroom Array with Graphene Patches

NonNon Local ModelLocal Model SD + ABCSD + ABC
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02rGraphene patches
• Wire medium slab as anisotropic material characterized by effective permittivity
• Spatial dispersion
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Silveirinha et al., IEEE Trans. Antennas Propagat., 56, Feb. 2008



SD + ABC ModelSD + ABC Model
TM-polarized incident plane wave excites TEM and TM modes in the wireTM-polarized incident plane wave excites TEM and TM modes in the wire 
medium slab  
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• Two-sided impedance boundary condition at y=L:

• Additional boundary condition at the via-graphene patch connection at y=L:
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 

Reflection CoefficientReflection Coefficient
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In the limiting case 0  (transparent patches) it turns to wire-medium slab: 
Silveirinha et al., IEEE Trans. Antennas Propagat., 56, Feb. 2008

I th li iti
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In the limiting case   (PEC patches) it turns to mushroom HIS: 
Luukkonen et al., IEEE Trans. Microwave Theory Tech., 2009 (to appear)

Yakovlev et al., IEEE Trans. Microwave Theory Tech., 2009 (to appear)



Mushroom Array with Graphene PatchesMushroom Array with Graphene Patches
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02rGraphene patches

Period: 2 mm
Gap: 0.2 mm
Radius of vias: 0.05 mm
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Substrate thickness: 1 mm
Dielectric permittivity: 10.2



Mushroom HIS with Graphene PatchesMushroom HIS with Graphene Patches

C i ith h HIS ith t iC i ith h HIS ith t iComparison with graphene HIS without viasComparison with graphene HIS without vias
TM polarization
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Mushroom HIS with graphene patches results in stable resonance 
frequencies (in the vicinity of the plasma frequency) for different 
angles of incidence

q y,



Tunable Mushroom HIS with Graphene PatchesTunable Mushroom HIS with Graphene Patches
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In mushroom HIS with graphene patches the reflection minima can 
be obtained at different incident angles by adjusting the chemical 
potential



Mushroom HIS with PEC Patches and Lossy Dielectric SlabMushroom HIS with PEC Patches and Lossy Dielectric Slab
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Mushroom HIS results in better absorption, however, in both cases 
the reflection coefficient is sensitive to the angle of incidence 



Microscopic Current Along the ViasMicroscopic Current Along the Vias
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For large chemical potential [electrostatic bias field] the 
microscopic current along the vias is close to uniform and the
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microscopic current along the vias is close to uniform, and the 
spatial dispersion effects in wire medium are significantly reduced



ConclusionsConclusions

 Dynamic model for HIS with graphene patches and non-local
(SD+ABC) model for mushroom HIS with graphene patches
are proposed for the analysis of absorption properties at
microwavesmicrowaves

 The reflection minima in HIS structures with graphene
patches (with and without vias) can be obtained at differentp ( )
incident angles by adjusting the chemical potential
(electrostatic bias field)

 For large values of chemical potential the microscopic For large values of chemical potential the microscopic
current along the vias is close to uniform, and the spatial
dispersion effects in wire-medium are significantly reduced
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