Surface Behavior of Metal Plates Subjected to Projectile Impact

Cole Fowler
CE 511-01/ ENGR 699-21
5/6/2011
Objectives

- Analyze steel plate behavior under impact loading
- Calculate stiffness coefficient of plate structure
- Determine speed needed for penetration
- Compare calculated and experimental data
Experimental Set-up

Side View

Top View

Annie

Structure

Camera
Properties

- **Projectile**
 - Mass = 0.318 lbs
 - Density = 0.027 lbs/in3
 - Diameter = 2.83 in
 - $V_o = 641.44$ in/s
 - Acc = 42130 in/s2
 - Distance = 5.848 in

- **Plate**
 - Mass = 2.67 lbs
 - Density = 0.131 lbs/in3
 - Thickness = 0.103 in
 - $\text{Disp}_{\text{max}} = 0.271$ in
 - $E = 29,000,000$ psi
 - $I = 0.0000911$ in4
Free Body Diagram

\[m \ddot{x}'' = kx \]

SDOF—Neglect Damping

\[F \rightarrow M \]

\[k \]
Data Output

Export of Displayed Graph Data

<table>
<thead>
<tr>
<th>Column A</th>
<th>Column B: Time</th>
<th>Column C: 1D - Line 1 - Target 1 - X</th>
<th>Column D: 1D - Line 2 - Target 1 - X</th>
<th>Column E: 2D - Feature 1 () - X</th>
<th>Column F: 2D - Feature 1 () - Y</th>
<th>Column G: 2D - Feature 1 () - Distance</th>
<th>Column H: 2D - Feature 1 () - Speed</th>
<th>Column I: 2D - Feature 1 () - X Velocity</th>
<th>Column J: 2D - Feature 1 () - Y Velocity</th>
<th>Column K: 2D - Feature 1 () - Acceleration</th>
<th>Column L: 2D - Feature 1 () - X Acceleration</th>
<th>Column M: 2D - Feature 1 () - Y Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>frame number</td>
<td>in Red Line</td>
<td>in Green Line</td>
<td>in Ball</td>
<td>in Ball</td>
<td>in Ball</td>
<td>less accuracy than displacement</td>
<td>less than accel</td>
</tr>
<tr>
<td>0.267</td>
<td>0.158609</td>
<td>0.161232</td>
<td>-5.84814</td>
<td>6.600474</td>
<td>8.818562</td>
<td>667.8883</td>
<td>641.4399</td>
<td>-186.09</td>
<td>102743.9</td>
<td>-42130.1</td>
<td>-93708.9</td>
<td>-93708.9</td>
</tr>
<tr>
<td>0.267333</td>
<td>0.158609</td>
<td>0.161232</td>
<td>-5.84814</td>
<td>6.600474</td>
<td>8.818562</td>
<td>667.8883</td>
<td>641.4399</td>
<td>-186.09</td>
<td>102743.9</td>
<td>-42130.1</td>
<td>-93708.9</td>
<td>-93708.9</td>
</tr>
<tr>
<td>0.267667</td>
<td>0.158609</td>
<td>0.161232</td>
<td>-5.84814</td>
<td>6.600474</td>
<td>8.818562</td>
<td>667.8883</td>
<td>641.4399</td>
<td>-186.09</td>
<td>102743.9</td>
<td>-42130.1</td>
<td>-93708.9</td>
<td>-93708.9</td>
</tr>
<tr>
<td>0.268</td>
<td>0.158609</td>
<td>0.161232</td>
<td>-5.84814</td>
<td>6.600474</td>
<td>8.818562</td>
<td>667.8883</td>
<td>641.4399</td>
<td>-186.09</td>
<td>102743.9</td>
<td>-42130.1</td>
<td>-93708.9</td>
<td>-93708.9</td>
</tr>
<tr>
<td>0.268333</td>
<td>0.158609</td>
<td>0.161232</td>
<td>-5.84814</td>
<td>6.600474</td>
<td>8.818562</td>
<td>667.8883</td>
<td>641.4399</td>
<td>-186.09</td>
<td>102743.9</td>
<td>-42130.1</td>
<td>-93708.9</td>
<td>-93708.9</td>
</tr>
<tr>
<td>0.268667</td>
<td>0.158609</td>
<td>0.161232</td>
<td>-5.84814</td>
<td>6.600474</td>
<td>8.818562</td>
<td>667.8883</td>
<td>641.4399</td>
<td>-186.09</td>
<td>102743.9</td>
<td>-42130.1</td>
<td>-93708.9</td>
<td>-93708.9</td>
</tr>
<tr>
<td>0.269</td>
<td>0.158609</td>
<td>0.161232</td>
<td>-5.84814</td>
<td>6.600474</td>
<td>8.818562</td>
<td>667.8883</td>
<td>641.4399</td>
<td>-186.09</td>
<td>102743.9</td>
<td>-42130.1</td>
<td>-93708.9</td>
<td>-93708.9</td>
</tr>
<tr>
<td>0.269333</td>
<td>0.158609</td>
<td>0.161232</td>
<td>-5.84814</td>
<td>6.600474</td>
<td>8.818562</td>
<td>667.8883</td>
<td>641.4399</td>
<td>-186.09</td>
<td>102743.9</td>
<td>-42130.1</td>
<td>-93708.9</td>
<td>-93708.9</td>
</tr>
<tr>
<td>0.269667</td>
<td>0.158609</td>
<td>0.161232</td>
<td>-5.84814</td>
<td>6.600474</td>
<td>8.818562</td>
<td>667.8883</td>
<td>641.4399</td>
<td>-186.09</td>
<td>102743.9</td>
<td>-42130.1</td>
<td>-93708.9</td>
<td>-93708.9</td>
</tr>
<tr>
<td>0.27</td>
<td>0.158609</td>
<td>0.161232</td>
<td>-5.84814</td>
<td>6.600474</td>
<td>8.818562</td>
<td>667.8883</td>
<td>641.4399</td>
<td>-186.09</td>
<td>102743.9</td>
<td>-42130.1</td>
<td>-93708.9</td>
<td>-93708.9</td>
</tr>
<tr>
<td>0.27</td>
<td>0.158609</td>
<td>0.161232</td>
<td>-5.84814</td>
<td>6.600474</td>
<td>8.818562</td>
<td>667.8883</td>
<td>641.4399</td>
<td>-186.09</td>
<td>102743.9</td>
<td>-42130.1</td>
<td>-93708.9</td>
<td>-93708.9</td>
</tr>
<tr>
<td>810</td>
<td>0.27</td>
<td>0.158609</td>
<td>0.161232</td>
<td>-5.84814</td>
<td>6.600474</td>
<td>8.818562</td>
<td>667.8883</td>
<td>641.4399</td>
<td>-186.09</td>
<td>102743.9</td>
<td>-42130.1</td>
<td>-93708.9</td>
</tr>
</tbody>
</table>
Calculations

- **Equivalent Spring Constant**

 \[k_{eq} = \frac{192EI}{L^3} \]

 \[= \frac{(192)(29,000,000 \text{ psi})(0.0000911 \text{ in}^4)}{(15.25 \text{ in})^3} = 143 \frac{\text{lb}}{\text{in}} \]

- **Impact Force**

 - Relative to max deflection of plate:
 \[F = k_{eq} q_{max} = \left(143 \frac{\text{lb}}{\text{in}}\right)(0.271 \text{ in}) = 38.8 \text{ lbm} \]

 - Relative to mass and acceleration of projectile:
 \[F = m_{ball} a_{ball} = (0.318 \text{ lbs}) \left(42130 \ \frac{\text{in}}{s^2}\right) = 13397.34 \ \frac{\text{lb-in}}{s^2} \left[\frac{1}{g}\right] = 34.7 \text{ lbm} \]
Calculations

- Penetration Velocity—Naval Ordinance and Gunnery

\[\log v = 3.00945 + 0.75 \log d + 0.701 \log x - 0.5 \log w \]

\[= 3.00945 + 0.75 \log(2.83) + 0.701 \log(0.103) - 0.5 \log(0.318) \]

\[= 2.9 \]

\[v = 10^{2.9} \]

\[v = 794 \frac{ft}{s} = 541 \text{ mph} \]

\[v = \text{penetration velocity} \]
\[d = \text{diameter of projectile} \]
\[x = \text{penetration in inches} \]
\[w = \text{weight of projectile} \]
541 mph ~ Mach 0.70

- 70% speed of sound (768 mph)
- Commercial jets travel Mach 0.80
- Military Jets can travel Mach 2-6
- Most bullets travel Mach 2-3
- Average MLB pitcher throws 90 mph
 - Aroldis Chapman 105.1 mph in 2010
 - He would have to throw it 5.15 times harder to penetrate the steel plate
Simulation Set-up

\[V = 16.29 \text{ m/s} = 36.4 \text{ mph} \]

No Penetration
Results

Displacement from AutoDyn -- 0.320 in

Calculated Displacement -- 0.240 in

Video Captured Displacement -- 0.270 in

Percent Error

33.3%

12.5%
Penetration Simulation

Compression Contour at Max Deflection

V = 541 mph

No Penetration

Velocity Graph
Max Vel: 242 m/s = 541 mph

Integral of Velocity Graph
Max Defl: 85mm = 3.35”
Sources of Error

- **AutoDyn**
 - No built in material for ball and plate
 - No strength model
 - Chose similar material
 - Impact in x-direction only
 - Assumed rigid support structure

- **Video Capture**
 - Camera angle
 - Difficult to pinpoint element boundaries
 - Projectile movement in x and y directions

- **Hand Calculation**
 - Assumed rigid support structure
 - Assumed E value from similar materials
Thank You