INTRODUCTION

In applications where size, weight, cost, performance, ease of installation, and aerodynamic profile are constraints, low profile antennas like microstrip and printed slot antennas are required. Printed slot antennas fed by a coplanar waveguide (CPW) have several advantages over microstrip patch antennas. Slot antennas exhibit wider bandwidth, lower dispersion and lower radiation loss than microstrip antennas, and when fed by a coplanar waveguide they also provide an easy means of parallel and series connection of active and passive elements that are required for improving the impedance matching and gain [1].
A number of bow-tie slot designs were recently introduced which demonstrate wide bandwidth that ranges from 17% to 73% [2–11]. However, in order to use these antennas in phased array systems, the antenna element size must be smaller than half the wavelength at the highest operating frequency to avoid grating lobes while scanning the main beam. Thus, the separation distance between elements must be small, and such spacing results in high coupling, which causes scan blindness and anomalies within the desired bandwidth and scan volume.

Recently, the authors presented a novel wideband small-sized triangle slot antenna with a tuning stub [12]. This antenna can provide up to 50% bandwidth, and its bent version provides 57% bandwidth in the X-band for a size of only 12 mm. In this paper, a CPW fed rectangular slot antenna with a stub patch that supports ultra wideband characteristics is presented. Parametric studies and radiation characteristics for this antenna are presented. The numerical simulation and analysis for this class of antennas are performed using the Momentum software package of the Advanced Design System (ADS) by Agilent Technologies, which is based on the method of moments. Verifications of the ADS results are further performed by measurements and by using Ansoft HFSS software package, which is based on the finite element method.

2. ANTENNA GEOMETRY AND PARAMETRIC STUDY

The geometry and parameters of the rectangular slot antenna with a patch stub are shown in Fig. 1, where \(W_1 \) and \(L_1 \) are the width and height of the rectangle, \(W_2 \) and \(L_2 \) are the width and height of the patch stub, and \(L_3 \) is the distance between the patch stub and the CPW feed line. The antenna is supported by a dielectric substrate of a height equal to 32 mil and a relative dielectric constant of 3.38. The CPW is designed for a 50\(\Omega \) characteristic impedance with slot and feed line widths equal to 0.125 and 2 mm, respectively. In order to provide design criteria for this antenna, the effects of each geometrical parameter are analyzed. The antenna dimensions \((W_1, L_1, W_2, L_2, \text{ and } L_3)\) are chosen to be \((11, 7, 6, 1 \text{ and } 1 \text{ mm})\) and one parameter is changed at a time while the others are kept constant.

Figures 2, 3, 4, 5 and 6 show the effect of changing \(W_1, L_1, W_2, L_2 \) and \(L_3 \), respectively. All the results in these figures show that this antenna has three resonant frequencies: \(f_1, f_2 \) and \(f_3 \). As shown in Fig. 2, with the increase of \(W_1 \), \(f_1 \) and \(f_3 \) decrease and \(f_2 \) increases. As a result, when \(W_1 \) increases, the return loss level
Figure 1. The geometry and parameters of the rectangular slot antenna with patch stub.

Figure 2. The effect on S_{11} due to the change of W_1.

between f_2 and f_3 improves, while in the region between f_1 and f_2, it improves when decreasing W_1. As shown in Fig. 3, the slot height, L_1, affects the level of the return loss at f_1 and f_3, and as L_1 decreases, f_2 and f_3 increase, resulting in an increase in bandwidth. Figure 4 shows the effect of W_2. Contrary to the effect of W_1, the increase of W_2 decreases f_2 and slightly increases f_1 and f_3, which results in improving the return loss level between f_1 and f_2, while the return loss level between f_2 and f_3 improves when decreasing W_2. Finally, the effect of L_2 and L_3, as shown in Figs. 5 and 6, is found to be opposite to the aforementioned effect of L_1.

Figure 3.
Figure 3. The effect on S_{11} due to the change of L_1.

Figure 4. The effect on S_{11} due to the change of W_2.

Figure 5. The effect on S_{11} due to the change of L_2.
Figure 6. The effect on \(S_{11} \) due to the change of \(L_3 \).

Figure 7. Comparison between the measured and computed (a) return loss, and (b) VSWR, for the rectangular slot antenna of \(W_1, L_1, W_2, L_2 \) and \(L_3 = 11, 7, 6, 1, \) and 1.

3. FINAL ANTENNA DESIGN

A rectangular slot antenna with a patch stub of \(W_1, L_1, W_2, L_2 \) and \(L_3 = (11, 7, 6, 1, \) and 1 mm) is simulated using HFSS to verify the results of ADS simulations. In HFSS, a finite ground plane of a size of 20 × 25 mm\(^2\) is used. The return loss and VSWR are computed using ADS and Ansoft HFSS, and measured using a 8510 vector network analyzer and are shown in Fig. 7 along with a prototype of the final antenna design. Although good agreement can be seen, there are small discrepancies between the computed and measured results, which
may occur because of the effect of the SMA connector and fabrication imperfections. The measured results show that the antenna operates over a wide range that extends from 8 GHz to more than 23.5 GHz, with an impedance bandwidth of more than 98%. Compared to the triangle slot antenna presented in [12], this antenna has a much wider bandwidth (42% more) and a smaller size (1 mm less) that allows for more separation distance between elements in an array environment, which in turn reduces the coupling and improves the scanning range.

ADS Momentum considers an infinite substrate even when the antenna has a finite ground plane, and as a result, it produces zero fields in the x-y plane. Therefore, HFSS is used instead to compute the radiation pattern. The gain in the x-z (H-plane) and the y-z (E-plane) is computed for frequencies from 8 to 19 GHz, which almost covers the entire operating band, and the results are shown in Fig. 8. All patterns are normalized to a maximum and minimum of 6 and -44 dB, respectively, with 10 dB/div. The lower half is removed because of the pattern symmetry around the z-axis. The minimum, maximum, and average gains in the entire operating band are 4, 6, and 5 dB, respectively. A good radiation pattern is obtained between 8 and 15 GHz. Low cross polarization is observed between 8 and 12 GHz, and the level starts to exceed -10 dB at 13 GHz, and starts to exceed the co-polarized fields at 16 GHz. Consequently, the usable bandwidth depends on the application for which this antenna will be used. The applications that accept high cross polarization levels can use this antenna up to 16 GHz. In wireless communication applications where the antenna is required to receive the signal from any direction with any polarization, the entire operating band of this antenna can be utilized. For many radar applications and phased arrays, the usable bandwidth is confined between 8 and 12 GHz, which still covers the entire X-band. The radiation patterns are measured at 8, 10 and 12 GHz, and presented in Fig. 9. Good agreement is obtained between the measurements and the simulation results of HFSS.

Unconventional array configurations can further improve the radiation patterns and significantly decrease the cross polarization level at high frequencies, and consequently increase the usable bandwidth for this antenna for such applications. To prove this, a two-element array in y-axis is constructed as shown in Fig. 10, where the second element is flipped 180° around the x-axis. This array is simulated using ADS and HFSS, and a comparison between the computed coupling is shown in Fig. 11. The average coupling between elements over the entire band is around -20 dB. The radiation patterns are computed using HFSS at 8 to 16 GHz, and presented in Fig. 12. The cross polarized fields are cancelled because of the symmetry of this array configuration in
Figure 8. Computed radiation patterns for the antenna of \(W_1, L_1, W_2, L_2\) and \(L_3 = 11, 7, 6, 1,\) and 1.

Figure 9. Measured radiation patterns in the \(X\)-band.
the E and H-planes. At the same time, good copolarized fields are obtained in the E and H-planes up to 16 GHz. Therefore, by using this array configuration, the usable bandwidth exceeds 67% for phased arrays and radar applications.

Finally, to show the scanning capability of this antenna in the X-band, the copolarized gain in the x-z plane is computed using HFSS for a linear array consisting of 32 elements in the x-direction at 0°, 30°, and 60°, and is presented in Fig. 13. Dolph-Tschebyscheff coefficients are used to obtain a -30 dB sidelobe level. The maximum gain of the array is 19 dB, and no grating lobe arises up to a 60° scanning angle.
4. CONCLUSION

The rectangular slot antenna with a patch stub has a smaller size and wider bandwidth than the triangle slot antenna with a tuning stub presented in [12]. The antenna has 98% impedance bandwidth, 6 dB average gain, and acceptable radiation characteristics that make this class of antennas a good candidate for a variety of communication applications. An array configuration is suggested for phased array applications that provides more than 61% usable bandwidth with 60° scanning range using only 32 elements in a linear array.
REFERENCES

Abdelnasser A. Eldek received an honor B.Sc. degree in Electronics and Communications Engineering from Zagazig University, Zagazig, Egypt, in 1993 and an M.S. degree in Electrical Engineering from Eindhoven University of Technology, Eindhoven, The Netherlands, in 1999. He was a research assistant with the Electronic Research Institute, in Cairo, Egypt, from 1995 to 1997, and from 1997 to 1999 he was a Master student at Eindhoven University of Technology with the cooperation of Philips Center For Technology and Fontys University for professional education, Eindhoven. From 1999 to 2000 he was assistant teacher in the Industrial Education College, Beni Suif, Egypt. He is currently working towards his Ph.D. degree and is a research assistant at the Department of Electrical Engineering, the University of Mississippi. He is a member of the IEEE and Sigma Xi.

Atef Z. Elsherbeni received an honor B.Sc. degree in Electronics and Communications, an honor B.Sc. degree in Applied Physics, and a M.Eng. degree in Electrical Engineering, all from Cairo University, Cairo, Egypt, in 1976, 1979, and 1982, respectively, and a Ph.D. degree in Electrical Engineering from Manitoba University, Winnipeg, Manitoba, Canada, in 1987. He joined the faculty at the University of Mississippi in August 1987 as an Assistant Professor and advanced to the rank of Associate Professor on July 1991, and to the rank of Professor on July 1997. Dr. Elsherbeni received The Mississippi Academy of Science 2003 Outstanding Contribution to Science Award, The 2002 IEEE Region 3 Outstanding Engineering Educator Award, The 2002 School of Engineering Outstanding Engineering Faculty Member of the Year Award, the 2001 Applied Computational Electromagnetic Society (ACES) Exemplary Service Award for leadership and contributions as Electronic Publishing managing Editor 1999–2001, the 2001 Researcher/Scholar of the year award in the Department of Electrical Engineering, The University of Mississippi, and the 1996 Outstanding Engineering Educator of the IEEE Memphis Section award. Dr. Elsherbeni has published 73 technical journal articles and 12 book chapters on applied electromagnetics, antenna design, and microwave subjects, and contributed to 210 professional presentations. Dr. Elsherbeni is a senior member of the Institute of Electrical and Electronics Engineers (IEEE). He is the Editor-in-Chief for the Applied Computational Electromagnetic Society (ACES) Jouit MATLAB Simulations for Radar Systems Design, CRC Press, 2003 and the main author of the chapters “Handheld Antennas” and “The Finite Difference Time Domain Technique for Microstrip Antennas” in Handbook of Antennas in Wireless Communications mrnal, an Associate Editor to the Radio
Science Journal, and the electronic publishing managing editor of ACES. He is the Chair of the Engineering and Physics Division of the Mississippi Academy of Science and the past Chair of the Educational Activity Committee for the IEEE Region 3 Section. Dr. Elsherbeni’s home page can be found at http://www.ee.olemiss.edu/atef and his email address is Elsherbeni@ieee.org.

Charles E. Smith was born in Clayton, AL, on June 8, 1934. He received the B.E.E., M.S., and Ph.D. degrees from Auburn University, Auburn, AL, in 1959, 1963, and 1968, respectively. While pursuing his advanced degrees from 1959 to 1968, he was employed as a Research Assistant with Auburn University Research Foundation. In late 1968, he accepted the position of Assistant Professor of Electrical Engineering with The University of Mississippi, University, MS, and he advanced to the rank of Associate Professor in 1969. He was appointed Chairman of the Department of Electrical Engineering in 1975, and he is currently Professor and Chair Emeritus of this department. He has directed and is heavily involved in the development of The University’s current circuits, electronics, HF and microwave, computer-aided-design, and digital systems courses and laboratories. His main areas of interest are related to the application of electromagnetic theory to microwave circuits, antennas, measurements, RF and wireless systems, radar, digital and analog electronics, and computer-aided design. His recent research has been on the application of numerical techniques to microstrip transmission lines, antenna measurements in lossy media, measurement of electrical properties of materials, CAD in microwave circuits, radar designing, and data acquisition using network analyzers. Dr. Smith has published widely in these areas and has over 200 total publications including journal papers, technical reports, book chapters, and paper presentations. He has advised, or co-advised, 46 M.S. thesis and Ph.D. dissertations, and has received 6 awards for outstanding teaching and scholarship at The University of Mississippi. He is a Life Senior Member of the IEEE and is a member of the IEEE Antennas and Propagation Society, IEEE Microwave Theory and Techniques Society, IEEE Education Society, American Society of Engineering Education, Phi Kappa Phi, Eta Kappa Nu, Tau Beta Pi, and Sigma Xi.